
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 11, 867-880 (1990)

ITERATIVE ADAPTIVE IMPLICIT-EXPLICIT METHODS
FOR FLOW PROBLEMS

J. LIOU AND T. E. TEZDUYAR
Department of Aerospace Engineering and Mechanics, and Minnesota Supercomputer Institute, University of Minnesota,

Minneapolis, M N 55455, U .S .A .

SUMMARY

Iterative versions of the adaptive implicit-xplicit method are presented for the finite element computation
of flow problems with particular reference to incompressible flows and advection-diffusion problems. The
iterative techniques employed are the grouped element-by-element and generalized minimum residual
methods.

KEY WORDS Adaptive implicit%xplicit Grouped element-by-element

1. INTRODUCTION

For most flow problems of practical interest, especially in three dimensions, methods involving
direct solution of linear equation systems give rise to massive global coefficient matrices. Storage
and inversion of these matrices place a heavy demand on the computational resources in terms of
the CPU time and memory. Iterative, explicit and semi-explicit methods, on the other hand,
require storage and inversion of much simpler matrices, if at all. Properly implemented, these
methods can substantially reduce the demand for memory and CPU time while retaining most of
the desirable properties of the direct methods. In this paper we present the adaptive
implicit-explicit (AIE) procedures’ which are employed in combination with iterative techniques
such as the grouped element-by-element (GEBE)’ and generalized minimum residual (GMRES)3
methods. Although the description of the concepts and the numerical demonstrations are based
on incompressible flows and convection4iffusion problems, the approach presented here is
applicable to a wider class of problems in computational fluid dynamics.

In the AIE method the elements are dynamically grouped into implicit and explicit subsets. The
selection of the implicit elements is determined, at a given instant in time, by the element level
Courant number and some measure of the local variations in the solution. Since the com-
putational cost associated with the explicit elements is much smaller than that of the implicit
elements, by placing the implicit elements only where and when they are needed, substantial
savings in the CPU time and memory can be achieved.

The GEBE iteration method, on the other hand, is based on static (i.e. one-time) arrangement
of the elements into groups, with the condition that no two elements in the same group can share
a common node. In the GEBE method the preconditioning matrix is chosen to be a sequential
product of the element group matrices; this approach is a variation of the one taken in the regular
EBE methods employed in computational fluid and solid mechanics.’ The GEBE
approach eliminates the need for the formation, storage and factorization of large global matrices.

027 1-209 1 / 140867- 14$07.00
0 1990 by John Wiley & Sons, Ltd.

Received November 1989

868 J. LIOU AND T. E. TEZDUYAR

A l l

A 2 2

A 3 2

The element level matrices can be either stored or recomputed; in the case when they are stored,
the storage needed is still only linearly proportional to the number of elements. To minimize the
overhead associated with the synchronization involved in moving from one group to another, we
attempt to minimize the number of groups. Furthermore, to increase the vector efficiency of the
computations performed, within each group the elements are processed in packets of 128
elements.

The GMRES method was proposed by Saad and S c h ~ l t z . ~ It is based on the minimization of
the residual norm over a Krylov space. This method, with a properly chosen preconditioner, can
improve the convergence rate of the iterative algorithms for non-symmetric systems substantially.
Applications of the GMRES method to various fluid dynamics problems, including compressible
and incompressible flows, can be found in References 6 and 8.

In the iterative versions of the ATE method, to solve the equation systems resulting from the
implicitly treated elements, we employ the GEBE or GMRES iteration method. This approach
leads to an iterative AIE scheme which involves no direct solution effort. In the limiting case, if we
choose to treat all elements implicitly then the method becomes a pure GEBE or GMRES
iteration method.

Am* Rl

A y = R2 . (4)
Awl3 R3

ITERATIVE ADAPTIVE IMPLICIT-EXPLICIT METHODS 869

solved iteratively until a predetermined convergence condition is met:

A , , A o , = R, (block l), (5)

A,,Av = R, (block 2),

A,,Ao, = R, (block 3),

Remark 1. Although under certain conditions the matrix A, , can be symmetric and positive-
definite,9 we assume that in general this is not the case.

Remark 2. A,, is symmetric and positive-definite.
Remark 3. With proper implementation, A,, can be of tridiagonal form; this makes the

solution of this block essentially as easy as the solution of a one-dimensional problem.

3. THE SOLUTION TECHNIQUES

In our block-iteration procedure, at every iteration we need to solve three equation systems: (5),
(6) and (7). The cost involved in (7) is quite minor (see Remark 3) and therefore we solve this
equation with a direct method. Our main objective here is to minimize the computational cost
associated with solving equations (5) and (6), which, after hiding all the subscripts, can be
rewritten in the following general form:

AX = b. (8)
For completeness we first briefly describe the AIE, GEBE and GMRES methods.

The adaptive implicit-explicit (A I E) method

assembly of the global matrix A can be expressed as
Let & be the set of all elements e = 1,2, . . . , n,, where n,, is the number of elements. The

A = 1 A",
eeb

(9)

where A" is the component of A contributed by element e.

that
The AIE method is based on partitioning of the set of elements into the subsets 8, and 8, such

d = 6, u &,, (10)

0 = &,ndE. (11)
We then replace with

in which

(A"), = lump(Me) for block 1 (13)

(A'), = diag(A') for block 2. (14)

and

Here lump (Me) is the lumped version of the mass matrix for element e and diag (A") is the
diagonal of A'. The matrix A,,, has a skyline profile which is typically as shown in Figure 1.

870 J. LIOU AND T. E. TEZDUYAR

IMP

EXP

Figure I . Typical skyline profile of the matrix A,,,

In block 1 we use a direct method to solve (5) , whereas in block 2 we use A,,, as the
preconditioner for the conjugate gradient method’ employed to solve (6). Because the bandwidth
for the parts of AAIE corresponding to the explicit regions is substantially reduced, the method
leads to savings in CPU time and memory.

The grouping given by (10) and (1 1) is achieved dynamically (adaptively) on the basis of element
level stability and accuracy considerations.

The stability criterion is given in terms of the element Courantnumber C A f , which is defined as

where h is the ‘element length.” Any element with Courant number greater than the stability
limit of the explicit method needs to belong to the implicit group b,.

For accuracy considerations we want to use a test parameter 0; which is a measure of the local
variations in the solution. One possible way is to define this test parameter on the basis of the
element level L’-norm of the residual r ; we borrow this idea from the adaptive mesh refinement
techniques given in Reference 11; that is,

Elements with 0% greater than a predetermined value belong to group 8,. For other choices for 0%
see Reference 1.

Implementation of the AIE scheme is quite straightforward; compared to adaptive schemes
based on grid moving or element subdividing, it involves minimal bookkeeping and no geometric
constraints.

The grouped element-by-element (G E B E) method

In this method the elements are arranged into N,,,groups with the provision that no two
elements within a group can share a common node. This way, within each group, computations

ITERATIVE ADAPTIVE IMPLICIT-EXPLICIT METHODS 87 1

performed in element-by-element fashion can be done in parallel. In parallel computations we
would like to minimize the synchronization overhead associated with finishing with one group
and starting with another one. For this purpose the element-grouping algorithm described in
Reference 2 tries to minimize the number of groups. We note that this grouping is a static (one-
time) kind and therefore the computational cost involved in achieving it is a one-time cost.
Furthermore, within each goup the elements are processed in packets of 128 (or an appropriate
size) elements. This increases the vector efficiency of the computations.

On the basis of the grouping, the matrix A can be written as
NP,

A = C A,, (18)
K = l

with the ‘group matrices’ defined as

A , = 1 A‘, K = l , 2 , . . . , N,, ,
ee6 ,

where &, is the set of elements which belong to group K .
We start with the following scaled version of (8):

A;; = ii,
where

(21)

x, (22)

= W-‘I2b, (23)

A = W - “2AW- 112,

j ; = W1I2

and W is the scaling matrix. Selection of this scaling matrix depends on the properties of A; the
two choices we have considered are lump (M) and diag (A).

In the preconditioned iteration method, at iteration m, the following equation system is solved
for A?,:

1

PAY, = T,, (24)

(25)

where P is the preconditioning matrix and the residual vector T, is defined as - - -
?, = b - AX,.

If A is symmetric and positive-definite then the vector 2, is updated by using a conjugate gradient
method; otherwise we update this vector according to the expression

X m + = i, i sA$,, (26)

for which the search parameter s is determined with the formula

this formula is obtained by minimizing I / ?,+ 1 1 with respect to s.

performed in element-by-element fashion as shown below:
Remark 4. In the evaluation of the residual vector (25), the matrix-vector multiplication is

872 J. LIOU AND T. E. TEZDUYAR

Therefore the residual vector computations are highly vectorizable. In our computations we
choose to store the element level matrices.

In our GEBE approach, for block 1 (i.e. equation (5)) we use the two-pass GEBE pre-
conditioner, whereas for block 2 (i.e. equation (6)) we use the GEBE preconditioner based on
Crout factorization. We give a brief description of these two preconditioners.

The two-pass GEBE preconditioner (2P-GEBE). This preconditioning matrix, in its scaled
form, is defined as

K = l K = N p .

where

with - -
BK = A ~ - - W ~ , K = 1,2, . . . , N,, ,

WK = W-1'2(WK)W-1'2, K = 1 , 2 , . . . , N, , .

The definition given by (31) leads to 'Winget regularization'; we have also been experimenting
with an alternative definition given as

(33)
-

BK = A,, K = 1, 2, . . . , N,, .

Remark 5. Since there is no inter-element coupling within each group, EK can also be written as

E K - - n (I+iB'), K = 1, 2, . . . , N,,.
eeb,

(34)

The GEBE preconditioner based on Crout factorization (Crout-GEBE). Consider the following
Crout factorization :

I + 8 , = LKDKCJK, K = 1,2 , . . . , N,,. (35)

The Crout-GEBE preconditioner, in its scaled form, is defined as

K = l K = l K = N , ,

Details on vectorization and parallel processing of the GEBE method can be found in Reference
12.

The generalized minimum residual (GMRES) method

of the GMRES method used is given below.
For block 1 we also have the option to employ the GMRES method; an outline of the version

Given x,,,

set m = 0.

(i) Calculate the residual:

rm = W-'(Ax,-b) . (37)

ITERATIVE ADAPTIVE IMPLICIT-EXPLICIT METHODS 873

(ii)

(iii)

Construct the Krylov space:
e"' =

r m / / / r m / l r

j- 1

i = 1

f(j) = w - l A e (j - l) - C (w - l A e (j - l) 7 e (i)) e (i) ,

e(j) = f(j)

where k is the dimension of the Krylov space.
Update the unknown vector:

x,, = x, + C sje(j),

where s = { sj} is the solution of the equation system

2 < . < k \J\ 5

/ I / f(j) II 9

k

j = 1

QS = Z,

with

Q = [(w - l A e (0 W - 1 ~ e (j) 11,
z = { (W- lAe(i) , - rm)} ,

1 < i, j < k,
1 < i < k .

(iv) G o to the next iteration:

The iterations continue until 1 1 rm 1 1 becomes less than a predetermined value. We note that the
matrix Q is symmetric and positive-definite. Again, for the scaling matrix W we consider the
choices lump (M) and diag (A). For other kinds of preconditioners see References 7 and 8.

n c n + 1 and go to (37).

Combinations of the AIE and iterative methods

Within the framework of our AIE scheme we can employ an iterative technique, such as the
GEBE or GMRES method, to solve the equation system resulting from the implicitly treated
elements. This way those elements which need to be treated implicitly are treated so, any yet the
scheme involves no direct solution effort. In the rest of this section we describe two of the several
possible combinations.

AIEjGEBE on block 1 and GEBE on block 2. In this method, for block 1 we use the AIE
technique with the 2P-GEBE method employed to solve the equation system resulting from the
implicitly treated elements; for block 2 we use the Crout-GEBE preconditioned conjugate
gradient method.

The element grouping concept still applies in this method. In the implicit zones we still have
groups within which the elements have no common nodal points. We do not need to redo the
element grouping every time the distribution of the implicit zones is changed. The implicit
elements are selected from the entire set of elements which are already grouped. The parallel
nature of the GEBE method therefore is not affected by mixing with the AIE scheme.

AIEjGMRES on block I and GEBE on block 2. This time, for block 1 we use the AIE technique
with the GMRES method employed to solve the equation system resulting from the implicitly
treated elements; for block 2, we use, again, the Crout-GEBE preconditioned conjugate gradient
method.

In the AIE/GMRES algorithm we initialize the unknown vector as

xo = (lump(M))-'b. (45)

874 J. LIOU AND T. E. TEZDUYAR

This way, for explicitly treated equations the corresponding part of x,, is accepted as the solution,
whereas for the remaining equations the corresponding part of xo is used as the initial guess for
the GMRES iterations. The element-grouping concept remains in effect and facilitates the
vectorization and potential parallel processing.

4. NUMERICAL EXAMPLES AND BENCHMARKING

All computations were performed on the Minnesota Supercomputer Center CRAY-2 (four CPUs,
512 megawords of memory, 4.1 ns clock and UNICOS 4.0 operating system).

Two-dimensional rotational advection of a cosine hill (the rotating puf problem)

This standard pure advection problem is used in this paper mainly for the purpose of
benchmarking based on the CPU time and memory requirements. We use a unit square domain
and employ uniform meshes with 1 5 n x 1 5 n elements, where n = 1, 2, 4, 8 and 16. The velocity
field is rotational with respect to the centre of the domain. Initially, the cosine hill has unit
amplitude and a base radius of 02, and is centred at (0.27, 0.5). The time step for each mesh is
chosen to give a Courant number of 0.22 at the peak of the cosine hill. All boundary conditions
are Dirichlet-type.

The critical values for the test parameters CAt and 02 are 1.0 and 0.05 respectively. The
convergence limit for the iterative solvers is set to lo - ’ . For the GMRES method the dimension
of the Krylov space is five. The results for the benchmarking based on the CPU time and memory
requirements for the implicit, AIE, GEBE, GMRES, AIE/GEBE and AIE/GMRES methods are
shown in Tables I and 11.

It should be noted that some vectorization breakdown is involved in the selective treatment of
the implicit and explicit elements; therefore an increase in CPU time, compared to the pure
GEBE and GMRES methods, can be observed in some cases.

Table I . The results for the benchmarking based on the CPU time for various methods applied to the
rotating puff problem

Mesh IMP AIE GEBE GMRES AIEIGEBE AIEIGMRES

15x 15 1.0 0.880 1.649 1.124 1.368 1.115
30 x 30 1.0 0.722 1.153 0.937 1.039 0.924
60 x 60 1.0 0.553 0.775 0.704 0.743 0692

120 x 120 1.0 0.385 0.430 0.425 0.437 0.423
240 x 240 1.0 0.174 0.209 0.209 0.212 0.206

Table 11. The results for the benchmarking based on the memory needed for the coefficient matrices for
various methods applied to the rotating puff problem

Mesh IMP AIE GEBE GMRES AIEIGEBE AIEIGMRES

15x 15 1.0 0.343 1.552 1.123 0.570 0.810
30 x 30 1.0 0.214 0.726 0.537 0.243 0.366
60 x 60 1.0 0.167 0.352 0.263 0.1 14 0.176

120 x 120 1.0 0.142 0.173 0.130 0.055 0.087
240 x 240 1.0 0.113 0.086 0.065 0.026 0.043

ITERATIVE ADAPTIVE IMPLICIT-EXPLICIT METHODS 875

Flow past a circular cylinder

For this benchmark problem we used three different finite element meshes. Mesh A consists of
1310 elements and 1365 nodes; around the cylinder there are 29 elements in the radial direction
and 40 elements in the circumferential direction. Mesh B involves 5220 elements and 5329 nodes
with 58 and 80 elements in the radial and circumferential directions respectively. Mesh C contains
19 836 elements and 20046 nodes with 116 and 156 elements in the radial and circumferential
directions respectively. The dimensions of the computational domain, normalized by the cylinder
diameter, are 30.5 and 16.0 in the flow and cross-flow directions respectively. The free stream
velocity is 0.125 and the initial value of the vorticity is zero everywhere in the domain. The
Reynolds number based on the uniform free stream velocity and the cylinder diameter is 100.

The critical values for the test parameters C,, and a$ are 1.0 and lo-' respectively.
For the GMRES method the dimension of the Krylov space is five. The convergence limit for

the iterative solvers is for block 2. We tested seven methods: implicit,
block iteration. AIE, GEBE (2P-GEBE on block 1 and Crout-GEBE on block 2), GMRES
(GMRES on block 1 and Crout-GEBE on block 2), AIE/GEBE (AIE/GEBE on block 1 and
Crout-GEBE on block 2) and AIE/GMRES (AIE/GMRES on block 1 and Crout-G':BE on
block 2). The results for the benchmarking based on the CPU time and memory requirements are
shown in Tables 111 and IV.

For this problem the solutions obtained with the AIE method can be found in Reference 1.

for block 1 and

Plane je t impinging on a wedge

In this problem we illustrate how the iterative AIE method works; we employ the AIE/GEBE
method (AIE/GEBE on block 1 and Crout-GEBE on block 2). The computational domain is an
80 x 80 square, and the distance between the jet and the leading tip of the wedge is 7.5. The single
mesh employed contains 10 566 nodal points and 10296 elements (see Figure 2). The jet inlet
consists of a parabolic velocity profile with both the width and the mean value set to unity; the
Reynolds number based on these values is 250. The computation is performed with a time step
size 0.05. The critical values for the test parameters C,, and at;. are 1.0 and respectively. The

Table 111. The results for the benchmarking based on the CPU time for various methods applied to flow
past a circular cylinder

Mesh IMP BLOCK AIE GEBE GMRES AIEIGEBE AIEIGMRES

A 1 .o 0.478 0.542 0.165 0.191 0.167 0.193
B 1 .o 0.578 0.423 0.118 0.159 0.139 0.160
C 1 .o 0.797 0.349 0.159 0.169 0.165 0.166

Table IV. The results for the benchmarking based on the memory needed for the coefficient matrices for
various methods applied to flow past a circular cylinder

Mesh I M P BLOCK AIE GEBE GMRES AIE/GEBE AIE/GMRES

A 1 .o 0.399 0.084 0.172 0.148 0.104 0.123
B 1 .o 0.407 0.080 0.085 0.073 0.05 1 0.06 1
C 1 .o 0.410 0.077 0.042 0.037 0.025 0.030

876 J. LIOU AND T. E. TEZDUYAR

Figure 2. Plane jet impinging on a wedge: the finite element mesh (10296 elements, 10566 nodes)

ITERATIVE ADAPTIVE IMPLICIT-EXPLICIT METHODS 877

Figure 3. Plane jet impinging on a wedge at Reynolds number 250: solution obtained by the AIE/GEBE method at t
= 28.75. From top to bottom: distribution of the implicit elements, the vorticity and the streamlines

878 J. LIOU AND T. E. TEZDUYAR

I U

Figure 4. Plane jet impinging on a wedge at Reynolds number 250: solution obtained by the AIE/GEBE method at f
= 37.50. From top to bottom: distribution of the implicit elements, the vorticity and the streamlines

ITERATIVE ADAPTIVE IMPLICIT-EXPLICIT METHODS 879

Figure 5. Plane jet impinging on a wedge at Reynolds number 250: solution obtained by the AIE/GEBE method at t
= 63.75. From top to bottom: distribution of the implicit elements, the vorticity and the streamlines

880 J. LIOU AND T. E. TEZDUYAR

convergence limit for the iterative solvers is lo-’ for block 1 and for block 2. Figures 3-5
show, at various time steps, the distribution of the implicit elements, the vorticity and the
streamlines.

5. CONCLUSIONS

We have presented the iterative versions of the adaptive implicit+xplicit method. In this
approach the GEBE and GMRES iteration methods are employed to solve the equation systems
resulting from the implicitly treated elements, and therefore no direct solution effort is involved.
The benchmarking results demonstrate that the methods presented can substantially reduce the
CPU time and memory requirements in large-scale flow problems.

ACKNOWLEDGEMENTS

This research was sponsored by NASA-Johnson Space Center under contract NAS-9- 17892 and
by NSF under grant MSM-8796352.

REFERENCES

1. T. E. Tezduyar and J. Liou, ‘Adaptive implicitxxplicit finite element algorithms for fluid mechanics problems’,
Comput. Methods Appl. Mech. Eng., 78, 165-179 (1990).

2. T. E. Tezduyar and J. Liou, ‘Grouped element-by-element iteration schemes for incompressible flow computations’,
Comput. Phys. Commun. 53,441453 (1989).

3. Y. Saad and M. H. Schultz, ‘GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
systems’, Research Report YALEUIDCSIRR-254, 1983.

4. T. J. R. Hughes, J. Winget, I. Levit and T. E. Tezduyar, ‘New alternating direction procedures in finite element analysis
based upon EBE approximate factorizations’, in S. N. Atluri and N. Perrone (eds), Computer Methods for Nonlinear
Solids and Mechanics; A M D Vol. 54, ASME, New York, 1983, pp. 75-110.

5. T. E. Tezduyar and J. Liou, ‘Element-by-element and implicit-zxplicit finite element formulations for computational
fluid dynamics’, in R. Glowinski, G. H. Go1 ub, G. A. Meurant and J. Periaux (eds), First fnt . Symp. on Domain
Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1988, pp. 281-300.

6. F. Shakib, T. J. R. Hughes and Z. Johan, ‘A multi-element group preconditioned GMRES algorithm for non-
symmetric systems arising in finite element analysis’, Comput. Methods Appl. Mech. Eng., in the press.

7. T. J. R. Hughes and R. M. Ferencz, ‘Fully vectorized EBE preconditioners for nonlinear solid mechanics: applications
to large-scale three-dimensional continuum, shell and contact/impact problems’, in R. Glowinski, G. H. Golub, G. A.
Meurant and J. Periaux (eds), First Int. Symp. on Domain Decomposition Methods for Partial Differential Equations,
SIAM, Philadelphia, PA, 1988, pp. 261-280.

8. M. 0. Bristeau, R. Glowinski and J. Periaux, ‘Acceleration procedures for the numerical simulation of compressible
and incompressible viscous flows’, Preprint.

9. T. E. Tezduyar, R. Glowinski and J. Liou, ‘PetrovClalerkin methods on multi-connected domains for the vortic-
ity-streamfunction formulation of the incompressible Navier-Stokes equations’, f nt. j . numer. methods Juids, 8,

10. T. E. Tezduyar and D. K. Ganjoo, ‘PetrovGalerkin formulations with weighting functions dependent upon spatial
and temporal discretization: application to transient convection-diffusion problems’, Comput. Methods Appl. Mech.

11. G. F. Carey and J. T. Oden, Finite Elements: Computational Aspects Vol. 3, Prentice-Hall, Englewood Cliffs, NJ, 1984.
12. T. E. Tezduyar, J. Liou, T. Nguyen and S. Poole, ‘Adaptive implicit-xplicit and parallel element-by-element iteration

schemes’, in T. F. Chan, R. Glowinski, J. Periaux and 0. B. Widlund (eds), Domain Decomposition Methods, SIAM,
Philadelphia, PA, 1989, Chap. 34, pp. 443463.

1269-1290 (1988).

Ew. 59,47-71 (1986).

