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SUMMARY 

Iterative versions of the adaptive implicit-xplicit method are presented for the finite element computation 
of flow problems with particular reference to incompressible flows and advection-diffusion problems. The 
iterative techniques employed are the grouped element-by-element and generalized minimum residual 
methods. 
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1. INTRODUCTION 

For most flow problems of practical interest, especially in three dimensions, methods involving 
direct solution of linear equation systems give rise to massive global coefficient matrices. Storage 
and inversion of these matrices place a heavy demand on the computational resources in terms of 
the CPU time and memory. Iterative, explicit and semi-explicit methods, on the other hand, 
require storage and inversion of much simpler matrices, if at all. Properly implemented, these 
methods can substantially reduce the demand for memory and CPU time while retaining most of 
the desirable properties of the direct methods. In this paper we present the adaptive 
implicit-explicit (AIE) procedures’ which are employed in combination with iterative techniques 
such as the grouped element-by-element (GEBE)’ and generalized minimum residual (GMRES)3 
methods. Although the description of the concepts and the numerical demonstrations are based 
on incompressible flows and convection4iffusion problems, the approach presented here is 
applicable to a wider class of problems in computational fluid dynamics. 

In the AIE method the elements are dynamically grouped into implicit and explicit subsets. The 
selection of the implicit elements is determined, at a given instant in time, by the element level 
Courant number and some measure of the local variations in the solution. Since the com- 
putational cost associated with the explicit elements is much smaller than that of the implicit 
elements, by placing the implicit elements only where and when they are needed, substantial 
savings in the CPU time and memory can be achieved. 

The GEBE iteration method, on the other hand, is based on static (i.e. one-time) arrangement 
of the elements into groups, with the condition that no two elements in the same group can share 
a common node. In the GEBE method the preconditioning matrix is chosen to be a sequential 
product of the element group matrices; this approach is a variation of the one taken in the regular 
EBE methods employed in computational fluid and solid mechanics.’ The GEBE 
approach eliminates the need for the formation, storage and factorization of large global matrices. 
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The element level matrices can be either stored or recomputed; in the case when they are stored, 
the storage needed is still only linearly proportional to the number of elements. To minimize the 
overhead associated with the synchronization involved in moving from one group to another, we 
attempt to minimize the number of groups. Furthermore, to increase the vector efficiency of the 
computations performed, within each group the elements are processed in packets of 128 
elements. 

The GMRES method was proposed by Saad and S c h ~ l t z . ~  It is based on the minimization of 
the residual norm over a Krylov space. This method, with a properly chosen preconditioner, can 
improve the convergence rate of the iterative algorithms for non-symmetric systems substantially. 
Applications of the GMRES method to various fluid dynamics problems, including compressible 
and incompressible flows, can be found in References 6 and 8. 

In the iterative versions of the ATE method, to solve the equation systems resulting from the 
implicitly treated elements, we employ the GEBE or GMRES iteration method. This approach 
leads to an iterative AIE scheme which involves no direct solution effort. In the limiting case, if we 
choose to treat all elements implicitly then the method becomes a pure GEBE or GMRES 
iteration method. 

Am* Rl  

A y  = R2 . (4) 
Awl3 R3 
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solved iteratively until a predetermined convergence condition is met: 

A , , A o ,  = R, (block l), ( 5 )  

A,,Av = R, (block 2), 

A,,Ao, = R, (block 3), 

Remark 1. Although under certain conditions the matrix A, , can be symmetric and positive- 
definite,9 we assume that in general this is not the case. 

Remark 2. A,, is symmetric and positive-definite. 
Remark 3. With proper implementation, A,, can be of tridiagonal form; this makes the 

solution of this block essentially as easy as the solution of a one-dimensional problem. 

3. THE SOLUTION TECHNIQUES 

In our block-iteration procedure, at every iteration we need to solve three equation systems: (5),  
(6) and (7). The cost involved in (7) is quite minor (see Remark 3) and therefore we solve this 
equation with a direct method. Our main objective here is to minimize the computational cost 
associated with solving equations (5) and (6), which, after hiding all the subscripts, can be 
rewritten in the following general form: 

AX = b. (8) 
For completeness we first briefly describe the AIE, GEBE and GMRES methods. 

The adaptive implicit-explicit ( A I E )  method 

assembly of the global matrix A can be expressed as 
Let & be the set of all elements e = 1,2, . . . , n,, where n,, is the number of elements. The 

A =  1 A", 
eeb 

(9) 

where A" is the component of A contributed by element e. 

that 
The AIE method is based on partitioning of the set of elements into the subsets 8, and 8, such 

d = 6, u &,, (10) 

0 = &,ndE. (11)  
We then replace with 

in which 

( A"), = lump( Me) for block 1 (13) 

(A'), = diag(A') for block 2. (14) 

and 

Here lump (Me) is the lumped version of the mass matrix for element e and diag (A") is the 
diagonal of A'. The matrix A,,, has a skyline profile which is typically as shown in Figure 1.  
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Figure I .  Typical skyline profile of the matrix A,,, 

In block 1 we use a direct method to solve (5 ) ,  whereas in block 2 we use A,,, as the 
preconditioner for the conjugate gradient method’ employed to solve (6). Because the bandwidth 
for the parts of AAIE corresponding to the explicit regions is substantially reduced, the method 
leads to savings in CPU time and memory. 

The grouping given by (10) and (1 1) is achieved dynamically (adaptively) on the basis of element 
level stability and accuracy considerations. 

The stability criterion is given in terms of the element Courantnumber C A f ,  which is defined as 

where h is the ‘element length.” Any element with Courant number greater than the stability 
limit of the explicit method needs to belong to the implicit group b,. 

For accuracy considerations we want to use a test parameter 0; which is a measure of the local 
variations in the solution. One possible way is to define this test parameter on the basis of the 
element level L’-norm of the residual r ;  we borrow this idea from the adaptive mesh refinement 
techniques given in Reference 11; that is, 

Elements with 0% greater than a predetermined value belong to group 8,. For other choices for 0% 
see Reference 1. 

Implementation of the AIE scheme is quite straightforward; compared to adaptive schemes 
based on grid moving or element subdividing, it involves minimal bookkeeping and no geometric 
constraints. 

The grouped element-by-element ( G E B E )  method 

In this method the elements are arranged into N,,,groups with the provision that no two 
elements within a group can share a common node. This way, within each group, computations 
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performed in element-by-element fashion can be done in parallel. In parallel computations we 
would like to minimize the synchronization overhead associated with finishing with one group 
and starting with another one. For this purpose the element-grouping algorithm described in 
Reference 2 tries to minimize the number of groups. We note that this grouping is a static (one- 
time) kind and therefore the computational cost involved in achieving it is a one-time cost. 
Furthermore, within each goup the elements are processed in packets of 128 (or an appropriate 
size) elements. This increases the vector efficiency of the computations. 

On the basis of the grouping, the matrix A can be written as 
NP, 

A =  C A,, (18) 
K = l  

with the ‘group matrices’ defined as 

A , =  1 A‘, K = l , 2  , . . . ,  N,, ,  
ee6 ,  

where &, is the set of elements which belong to group K .  
We start with the following scaled version of (8): 

A;; = ii, 
where 

(21) 

x, (22) 

= W-‘I2b, (23)  

A = W -  “2AW- 112,  

j ;  = W1I2 

and W is the scaling matrix. Selection of this scaling matrix depends on the properties of A; the 
two choices we have considered are lump (M) and diag (A).  

In the preconditioned iteration method, at iteration m, the following equation system is solved 
for A?,: 

1 

PAY, = T,, (24) 

(25) 

where P is the preconditioning matrix and the residual vector T, is defined as - -  - 
?, = b - AX,. 

If A is symmetric and positive-definite then the vector 2, is updated by using a conjugate gradient 
method; otherwise we update this vector according to the expression 

X m +  = i, i sA$,, (26) 

for which the search parameter s is determined with the formula 

this formula is obtained by minimizing I /  ?,+ 1 1  with respect to s. 

performed in element-by-element fashion as shown below: 
Remark 4. In the evaluation of the residual vector (25), the matrix-vector multiplication is 
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Therefore the residual vector computations are highly vectorizable. In our computations we 
choose to store the element level matrices. 

In our GEBE approach, for block 1 (i.e. equation (5 ) )  we use the two-pass GEBE pre- 
conditioner, whereas for block 2 (i.e. equation (6)) we use the GEBE preconditioner based on 
Crout factorization. We give a brief description of these two preconditioners. 

The two-pass GEBE preconditioner (2P-GEBE). This preconditioning matrix, in its scaled 
form, is defined as 

K = l  K = N p .  

where 

with - - 
BK = A ~ - - W ~ ,  K = 1,2, . . . , N,, ,  

WK = W-1'2(WK)W-1'2, K = 1 , 2 , .  . . , N, , .  

The definition given by (31) leads to 'Winget regularization'; we have also been experimenting 
with an alternative definition given as 

(33) 
- 

BK = A,, K = 1, 2, . . . , N,, .  

Remark 5. Since there is no inter-element coupling within each group, EK can also be written as 

E K -  - n (I+iB'), K = 1, 2, . . . , N,,. 
eeb,  

(34) 

The GEBE preconditioner based on Crout factorization (Crout-GEBE). Consider the following 
Crout factorization : 

I + 8 ,  = LKDKCJK, K = 1,2 , .  . . , N,,. (35) 

The Crout-GEBE preconditioner, in its scaled form, is defined as 

K = l  K = l  K = N , ,  

Details on vectorization and parallel processing of the GEBE method can be found in Reference 
12. 

The generalized minimum residual (GMRES) method 

of the GMRES method used is given below. 
For block 1 we also have the option to employ the GMRES method; an outline of the version 

Given x,,, 

set m = 0. 

(i) Calculate the residual: 

rm = W-'(Ax,-b) .  (37) 
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(ii) 

(iii) 

Construct the Krylov space: 
e"' = 

r m / / / r m / l r  

j-  1 

i =  1 

f(j) = w - l A e ( j - l ) -  C ( w - l A e ( j - l )  7 e ( i ) ) e ( i ) ,  

e(j) = f(j) 

where k is the dimension of the Krylov space. 
Update the unknown vector: 

x,, = x, + C sje(j), 

where s = { sj} is the solution of the equation system 

2 < . < k \J\ 5 

/ I /  f(j) II 9 

k 

j =  1 

QS = Z, 

with 

Q = [ ( w - l A e ( 0  W - 1 ~  e (j) 11, 
z = { (W- lAe( i ) , - rm)} ,  

1 < i, j < k,  
1 < i < k .  

(iv) G o  to the next iteration: 

The iterations continue until 1 1  rm 1 1  becomes less than a predetermined value. We note that the 
matrix Q is symmetric and positive-definite. Again, for the scaling matrix W we consider the 
choices lump (M) and diag (A). For other kinds of preconditioners see References 7 and 8. 

n c n +  1 and go to (37). 

Combinations of the AIE and iterative methods 

Within the framework of our AIE scheme we can employ an iterative technique, such as the 
GEBE or GMRES method, to solve the equation system resulting from the implicitly treated 
elements. This way those elements which need to be treated implicitly are treated so, any yet the 
scheme involves no direct solution effort. In the rest of this section we describe two of the several 
possible combinations. 

AIEjGEBE on block 1 and GEBE on block 2. In this method, for block 1 we use the AIE 
technique with the 2P-GEBE method employed to solve the equation system resulting from the 
implicitly treated elements; for block 2 we use the Crout-GEBE preconditioned conjugate 
gradient method. 

The element grouping concept still applies in this method. In the implicit zones we still have 
groups within which the elements have no common nodal points. We do not need to redo the 
element grouping every time the distribution of the implicit zones is changed. The implicit 
elements are selected from the entire set of elements which are already grouped. The parallel 
nature of the GEBE method therefore is not affected by mixing with the AIE scheme. 

AIEjGMRES on block I and GEBE on block 2. This time, for block 1 we use the AIE technique 
with the GMRES method employed to solve the equation system resulting from the implicitly 
treated elements; for block 2, we use, again, the Crout-GEBE preconditioned conjugate gradient 
method. 

In the AIE/GMRES algorithm we initialize the unknown vector as 

xo = (lump(M))-'b. (45) 
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This way, for explicitly treated equations the corresponding part of x,, is accepted as the solution, 
whereas for the remaining equations the corresponding part of xo is used as the initial guess for 
the GMRES iterations. The element-grouping concept remains in effect and facilitates the 
vectorization and potential parallel processing. 

4. NUMERICAL EXAMPLES AND BENCHMARKING 

All computations were performed on the Minnesota Supercomputer Center CRAY-2 (four CPUs, 
512 megawords of memory, 4.1 ns clock and UNICOS 4.0 operating system). 

Two-dimensional rotational advection of a cosine hill (the rotating puf problem) 

This standard pure advection problem is used in this paper mainly for the purpose of 
benchmarking based on the CPU time and memory requirements. We use a unit square domain 
and employ uniform meshes with 1 5 n  x 1 5 n  elements, where n = 1, 2, 4, 8 and 16. The velocity 
field is rotational with respect to the centre of the domain. Initially, the cosine hill has unit 
amplitude and a base radius of 02,  and is centred at (0.27, 0.5). The time step for each mesh is 
chosen to give a Courant number of 0.22 at the peak of the cosine hill. All boundary conditions 
are Dirichlet-type. 

The critical values for the test parameters CAt and 02 are 1.0 and 0.05 respectively. The 
convergence limit for the iterative solvers is set to lo - ’ .  For the GMRES method the dimension 
of the Krylov space is five. The results for the benchmarking based on the CPU time and memory 
requirements for the implicit, AIE, GEBE, GMRES, AIE/GEBE and AIE/GMRES methods are 
shown in Tables I and 11. 

It should be noted that some vectorization breakdown is involved in the selective treatment of 
the implicit and explicit elements; therefore an increase in CPU time, compared to the pure 
GEBE and GMRES methods, can be observed in some cases. 

Table I .  The results for the benchmarking based on the CPU time for various methods applied to the 
rotating puff problem 

Mesh IMP AIE GEBE GMRES AIEIGEBE AIEIGMRES 

15x 15 1.0 0.880 1.649 1.124 1.368 1.115 
30 x 30 1.0 0.722 1.153 0.937 1.039 0.924 
60 x 60 1.0 0.553 0.775 0.704 0.743 0692 

120 x 120 1.0 0.385 0.430 0.425 0.437 0.423 
240 x 240 1.0 0.174 0.209 0.209 0.212 0.206 

Table 11. The results for the benchmarking based on the memory needed for the coefficient matrices for 
various methods applied to the rotating puff problem 

Mesh IMP AIE GEBE GMRES AIEIGEBE AIEIGMRES 

15x 15 1.0 0.343 1.552 1.123 0.570 0.810 
30 x 30 1.0 0.214 0.726 0.537 0.243 0.366 
60 x 60 1.0 0.167 0.352 0.263 0.1 14 0.176 

120 x 120 1.0 0.142 0.173 0.130 0.055 0.087 
240 x 240 1.0 0.113 0.086 0.065 0.026 0.043 
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Flow past a circular cylinder 

For this benchmark problem we used three different finite element meshes. Mesh A consists of 
1310 elements and 1365 nodes; around the cylinder there are 29 elements in the radial direction 
and 40 elements in the circumferential direction. Mesh B involves 5220 elements and 5329 nodes 
with 58 and 80 elements in the radial and circumferential directions respectively. Mesh C contains 
19 836 elements and 20046 nodes with 116 and 156 elements in the radial and circumferential 
directions respectively. The dimensions of the computational domain, normalized by the cylinder 
diameter, are 30.5 and 16.0 in the flow and cross-flow directions respectively. The free stream 
velocity is 0.125 and the initial value of the vorticity is zero everywhere in the domain. The 
Reynolds number based on the uniform free stream velocity and the cylinder diameter is 100. 

The critical values for the test parameters C,, and a$ are 1.0 and lo-' respectively. 
For the GMRES method the dimension of the Krylov space is five. The convergence limit for 

the iterative solvers is for block 2. We tested seven methods: implicit, 
block iteration. AIE, GEBE (2P-GEBE on block 1 and Crout-GEBE on block 2), GMRES 
(GMRES on block 1 and Crout-GEBE on block 2), AIE/GEBE (AIE/GEBE on block 1 and 
Crout-GEBE on block 2) and AIE/GMRES (AIE/GMRES on block 1 and Crout-G':BE on 
block 2). The results for the benchmarking based on the CPU time and memory requirements are 
shown in Tables 111 and IV. 

For this problem the solutions obtained with the AIE method can be found in Reference 1. 

for block 1 and 

Plane je t  impinging on a wedge 

In this problem we illustrate how the iterative AIE method works; we employ the AIE/GEBE 
method (AIE/GEBE on block 1 and Crout-GEBE on block 2). The computational domain is an 
80 x 80 square, and the distance between the jet and the leading tip of the wedge is 7.5. The single 
mesh employed contains 10 566 nodal points and 10296 elements (see Figure 2). The jet inlet 
consists of a parabolic velocity profile with both the width and the mean value set to unity; the 
Reynolds number based on these values is 250. The computation is performed with a time step 
size 0.05. The critical values for the test parameters C,, and at;. are 1.0 and respectively. The 

Table 111. The results for the benchmarking based on the CPU time for various methods applied to flow 
past a circular cylinder 

Mesh IMP BLOCK AIE GEBE GMRES AIEIGEBE AIEIGMRES 

A 1 .o 0.478 0.542 0.165 0.191 0.167 0.193 
B 1 .o 0.578 0.423 0.118 0.159 0.139 0.160 
C 1 .o 0.797 0.349 0.159 0.169 0.165 0.166 

Table IV. The results for the benchmarking based on the memory needed for the coefficient matrices for 
various methods applied to flow past a circular cylinder 

Mesh I M P  BLOCK AIE GEBE GMRES AIE/GEBE AIE/GMRES 

A 1 .o 0.399 0.084 0.172 0.148 0.104 0.123 
B 1 .o 0.407 0.080 0.085 0.073 0.05 1 0.06 1 
C 1 .o 0.410 0.077 0.042 0.037 0.025 0.030 
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Figure 2. Plane jet impinging on a wedge: the finite element mesh (10296 elements, 10566 nodes) 
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Figure 3. Plane jet impinging on a wedge at Reynolds number 250: solution obtained by the AIE/GEBE method at t 
= 28.75. From top to bottom: distribution of the implicit elements, the vorticity and the streamlines 
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Figure 4. Plane jet impinging on a wedge at Reynolds number 250: solution obtained by the AIE/GEBE method at f 
= 37.50. From top to bottom: distribution of the implicit elements, the vorticity and the streamlines 
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Figure 5. Plane jet impinging on a wedge at Reynolds number 250: solution obtained by the AIE/GEBE method at t 
= 63.75. From top to bottom: distribution of the implicit elements, the vorticity and the streamlines 
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convergence limit for the iterative solvers is lo-’ for block 1 and for block 2. Figures 3-5 
show, at various time steps, the distribution of the implicit elements, the vorticity and the 
streamlines. 

5. CONCLUSIONS 

We have presented the iterative versions of the adaptive implicit+xplicit method. In this 
approach the GEBE and GMRES iteration methods are employed to solve the equation systems 
resulting from the implicitly treated elements, and therefore no direct solution effort is involved. 
The benchmarking results demonstrate that the methods presented can substantially reduce the 
CPU time and memory requirements in large-scale flow problems. 
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